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I  just recently began flying balloons, and typical of any new
student, I have besieged my poor instructor with an
unrelentless chain of questions. Many of the things I read

just don’t make sense to me. One prime example is the state-
ment “1000 cubic feet of hot air will lift 17 pounds, while he-
lium lifts 60 pounds.” This is just not so! Every self-respecting
balloonist knows that the same amount of hot air on a cold day
at sea level packs a bigger load than it will in warmer conditions
at 5000 feet. To prove my point, late one night I sat down in
front of my personal computer to accurately calculate just what
the lift is for different balloons at different altitudes (pressures),
outside air temperatures (OAT), and internal envelope tempera-
tures (Ti).

The next few paragraphs of this paper will lead you through
the physics and derivation of a formula. That formula will pro-
vide a tool to calculate the effective payload (passenger and carry-
on items like champagne) of any balloon for any given OAT and
altitude. You can use the formula to generate performance curves
for your own balloon.

Part 1
Before we get involved in the algebra, let us look at the

nature of how balloons fly. The physics of lift from balloons is a
direct application of Archimedes principle. Good old Archimedes
said that the buoyant force exerted on any object floating in a
fluid is equal to the weight of the fluid that the object displaces.
That’s why heavy steel ships float in the ocean. They displace a
volume of ocean water which is EXACTLY equal to their weight.
If you load more people on the ship, it sinks deeper, displacing
more water until the weight of the displaced water again equals
the entire weight of the ship. Well, a balloon does the same thing.
When you fill an AX-7 full of cold air, it displaces about 75,000
cubic feet (ft3) of air which weighs around 6000 pounds at sea
level (1 atmosphere of pressure) and 60° Fahrenheit (F) OAT.
This means that you have 6000 pounds of lift as soon as you
cold inflate! The trouble is, you added 6000 pounds of cold air
to the weight of your balloon in the process! So, your effective
lift (useful load) is zero. Now, if you heat that internal air it
becomes less dense (less mass per ft3) and the entire weight of
the internal bubble of air decreases. If you keep on heating the
bubble up to about 200° F its weight reduces to about 4700
pounds.
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So let’s add up the total weight of the balloon at this point.
1) Balloon, i.e. envelope, burners, basket, fuel tank, cham-

pagne, strikers, etc. weighs about 730 pounds for an AX-7
2) Pilot and passenger weigh about 300 pounds
3) Hot air in the envelope weighs about 4700 pounds
The sum of these items is 5730 pounds. If we subtract this

from our buoyant force (6000 pounds) we find about 270 pounds
of residual lift. This will produce a nice climb, or we can inter-
pret this result as the number of additional pounds of payload
we can carry and still maintain neutral buoyancy (no climb, no
descent). From this calculation we can also see that there will be
no trouble carrying this load with a Ti less than 200° F. In fact,
neutral buoyancy for these conditions will occur at a Ti of about
175° F.

Now, have I sparked your interest? How do I know, or how
can I anticipate what envelope temperature will be required for
a given load and given atmospheric conditions? Therein lies the
beauty of science and the language of mathematics to predict
how something will behave. It actually turns out that these num-
bers are quite easy to calculate once you have the formula. When
you perform your own calculations the results can be verified
very accurately upon testing your balloon. If you are impatient
with arithmetic just skip over to Part 2 where you see the sym-
bolic mumbo-jumbo begin to subside. For those of you who en-
joy the mathematics, here’s the BEEF!

To start, we need the laws generated by a couple of good
old boys named Charles and Boyles. They came up with a for-
mula like this:

PV=nRT    (1)

This says that the product of a gas volume (V) and its pres-
sure (P) is directly proportional to the amount of gas we have (n)
and its absolute temperature (T). R is simply a proportionality
constant (a number) which depends upon which system of units
one prefers to work with, i.e. metric, English, or whatever.

What we need to do is use equation (1) to relate the atmo-
spheric conditions and Ti (internal envelope temperature of our
balloon) to the total weight of the displaced air and the total
weight of the hot air. Once we have these we can subtract the
two (total lift), then subtract the balloon weight and BINGO!
We have “PAYLOAD.” In equation form, this looks like:
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Payload = (no-ni)g - wtb   (2)

Where:
no = (n outside) is the number of moles of the cold dis-

placed air
ni = (n inside) is the number of moles of the hot internal air
g = the number of grams of air per mole
wtb = the weight of the balloon

From equation (1) we can solve for the n’s in terms of pres-
sure, volume and temperature,

no=PoVo/RTo and ni=PiVi/RTi   (3)

where To is the absolute cold air temperature and Ti is the
absolute hot air temperature. Substituting these expressions into
equation (2), we get

Payload = (PoVo/RTo - PiVi/RTi)g - wtb   (4)

Since the internal pressure of a hot-air balloon is the same
as the outside ambient pressure we let Pi=Po=P. Likewise, the
volume of displaced air outside of the balloon equals the vol-
ume of the hot air inside the balloon so, Vi=Vo=V.

Rewriting (4),
Payload = (PV/RTo - PV/RTi)g - wtb

and factoring out PV/R
Payload = PV/R (1/To - 1/Ti)g - wtb

moving g to the front of the equation and rewriting a little
gives us,

Payload = PVg/R (1/To - 1/Ti) - wtb
This is almost a workable formula but we need to figure out

what values to use for g and R so we can plug in numbers and
get answers in the English system, i.e. cubic feet (ft3) for vol-
ume, atmospheres for pressure and pounds for weight. Quickly,
for you purists let’s assign some numbers to all of these symbols
so we can solve real problems. Let

g=28.8 gm/mole
for an atmospheric gas ration assuming 80% nitrogen and

20% oxygen (quick and dirty, but accurate to 1 or 2%). The ideal
gas constant is:

R = 2.90 X 10-3     atm ft3/mole K°

We easily find the following ratio.

g/R = 9943 gm K°/atm ft3

To convert to the English system we know that there are
454 grams per pound. So:

g/R = 9943/454 = 21.9 lb K°/atm ft3

Finally,
Payload = PV(1/To - 1/Ti) * (21.9 lb K°/atm ft3) - wtb   (6)

(* used to indicate multiplication)

Now what this equation will give us is the amount of weight
we can carry for a given atmospheric pressure (P), i.e. altitude,
ambient temperature (T), and whatever we feel comfortable with
as an internal envelope temperature (Ti).

There’s only one more catch to using equation (6) and that
lies in the fact that Ti and To must be converted to degrees Kelvin
(an absolute temperature scale where 0 degrees means the tem-
perature where all molecular motion stops). Figure 1 is a chart
which will allow you to convert degrees F to degrees K. We also
need to convert altitude to pressure in atmospheres (atm) and
Figure 2 gives you a nice chart for performing that task.

Part 2
Now let’s work a problem so you can start using this for-

mula for your own set of conditions.
Conditions:
Ambient Temperature - 60° F (To)
Balloon weight - 730 pounds (Wt)
Balloon volume - 77,400 ft3 (V)
Internal envelope temperature - 200° F (Ti)
Altitude (5000 ft) - .85 atm (P)
First we have to convert 60° F and 200° F into Kelvin tem-

peratures. Looking at Figure 1 we get Ti = 288.5° K and To =
366.3° K. So our list now looks like:
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Ti = 288.5° K
To = 366.3° K
P = .85 atm
V= 77,400 ft3

wtb = 730 pounds
Now let just plug these numbers into equation (6) and find

out how much weight we can carry:

Payload=[.85 * 77,400 * (1/288.5 - 1/366.3) * 21.9] - 730
Payload = 331 pounds

This means that you can carry up to 331 pounds of people,
champagne, strikers, lighters, gum, etc. on your balloon flight
and have neutral weight at an internal air temperature of 200° F.
Now if you would like to go up to 10,000 ft (P = .7 atm) then you
need to solve the equation again for the higher conditions (re-
duced pressure and temperature). Lets assume the temperature
drops 15° F going to 10,000 ft and we’ll crank out the answer.

To = 45° F = 280.2° K
Ti = 200° F = 366.3° K
P = .7 atm
V = 77,400 ft3

wtb = 730 pounds

The maximum payload at 10,000 ft is then
Payload = [.7 * 77,400 * (1/280.2 - 1/366.3) * 21.0] - 730

pounds
Payload = 265 lbs

So you can see that the maximum weight you may carry for
a given internal envelope temperature decreases with altitude.
Even though the ambient temperature goes down (which in-
creases lift) the atmospheric pressure drop
is a more dominant effect.

I had a lot of fun with this formula. In
fact from it I derived another formula to
find out what my internal temperature Ti
would have to be to carry a given payload
to a specific altitude and OAT. I use this
formula when two or three of us want to
fly high but maintain a reasonable Ti. With-
out a lot of derivation one can easily turn
equation (6) into

Ti = (ToPV * 21.9)/(1 - To(payload +
wtb))   (7)

I list this equation for those of you who
may want to program a home computer to
grind out the results of your particular bal-
loon for many different conditions.

Some of the more technically inclined
readers are probably wondering why I al-
lowed myself to assume a uniform internal
envelope temperature Ti. You know, of
course, it isn’t really right because the air
at the crown is hotter than at the throat.

Consider, however, that 80 to 90 percent of the hot air mass (of
most balloon designs) resides in the top 2/3 of the height of the
envelope. In this region there is a lot of turbulent flow going on,
especially when pilots use short blasts of heat in repetition. So I
just assumed uniform mixing and therefore a uniform heat dis-
tribution inside.

This formula (which has derived from ideal gas laws) may
give you a slight variation in payload when you test it against
the actual performance of your balloon. You can, however, ad-
just it for your balloon by inserting a small correction factor. For
instance assume that for your balloon you consistently find that
you get only 95% of the load the formula says you should get. In
this case always “Tweek” the formula by multiplying the result
of equation (6) by .95 (the fudge-factor).

The last figure (3) is a performance chart I generated on my
computer. I wrote a program to do these charts for any balloon
at any altitude. It just uses equation (6) for various ambient tem-
peratures (the diagonal lines), and envelope temperatures (across
the bottom axis of the chart). Here the weight, volume and alti-
tude of the balloon are fixed. To read the chart simply pick the
payload you would like to carry along the left vertical side. Then
move horizontally to the diagonal depicting the ambient tem-
perature. The position straight down from that point tells you
how hot you have to burn to lift that weight.

This article originally appeared in Balloon Life May 1986.
William G. Phillips, Research Physicist, Science and Aviation
Consultants Inc., Las Vegas, Nevada.
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D id you ever wonder what the forces inside of your bal-
loon were like? Sure, we all know that hot air rises
and if you capture hot air in bag, the bag goes up with

it. People talk about pressures, forces, loads, strength of materi-
als, etc. but on a detailed level, what really is happening to make
your balloon fly? If balloons have pressure in them, then why
don’t they deflate themselves like a small rubber blow-up bal-
loon? Since we don’t tie off our balloon throats why doesn’t the
high pressure air escape?

It’s sort of obvious that there’s pressure in a hot air balloon.
Just pull on the vent and feel the resistance. If you pack more
people into the gondola and a few more bottles of champagne,
the vent is harder to work! That means that the pressure went up.
The higher pressure applies higher force on the vent to keep it
sealed. This pressure in the balloon can’t be distributed uniformly
over the entire envelope. If it were, there would be a pressure
differential between the throat and the atmosphere. In that case
all of the air would come roaring out of the throat and deflate the
balloon. An additional clue to the nonuniformity in pressure can
be gleaned from the fight manual. You’re allowed good sized
tears near the throat but only tiny ones above the equator. That’s
because the loss of hot air is greater for the same sized hole the
higher you go in the balloon.

A Few Definitions
If we’re going to talk about pressure we all need to agree on

how we talk about it. Pressure is the measure of force exerted on
a given area. If I apply a force of 10 pounds uniformly over a
square foot of cloth, then we say the pressure is 10 pounds per
square foot. If I distribute the same force over 2 square feet then
we could say we have a pressure of 10 pounds on 2 square feet
or simply 5 pounds per square foot. So pressure is the force ex-
erted on something divided by the area of that something, i.e.
force per unit area.

Well, all that is nice but what is force? Everyone probably
thinks that they already know what force is, and maybe they do,
but we should define a couple of things anyway. If you hold
onto a bottle of champagne it applies a force to your hand of a
couple pounds-toward the earth. If you strap a bunch of helium-
filled balloons to your wrist you might get 2 pounds force again
but-toward the sky. So when we talk about force, we always

need to talk about direction too! We conveniently do this on
paper by drawing arrows (called vectors). (Figure 1) When we
draw these arrows their length represents the amount of their
magnitude. Their direction, of course, represents their direction.
For example a 2-pound upward force is drawn twice as long as a
1-pound upward force, a 3-pound force 3 times longer, and so
on.

Only one more concept and we can get back to balloon talk.
This concerns the up and
sideways vector. If I pull a
kid’s wagon with an up and
sideways force, I can accom-
plish the same thing by mak-
ing 2 separate forces at 90
degrees to each other which
are equivalent. (Figure 2)

In the second part of the
picture I have reduced the up and sideways force to 2 equivalent
forces called components and the kid in the wagon will never
know the difference. Any force can be replaced by substituting
other equivalent forces for it. This is a powerful concept be-
cause it allows us to really see along which directions these forces
are pushing things. Now, since pressure is force per unit area
and force has two intrinsic attributes, i.e. direction and magni-
tude, pressure also has direction and magnitude.

About Pressure
Anyone who has ever snorkeled or SCUBA dived knows

that you have to clear your ears as you go down to greater depths.

The Forces and Pressures
of Balloon Flight

by William G. Phillips
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That’s because the water pressure increases with depth. Since
the water pressure doubles if you double your depth and triples
if you triple your depth, we say that the pressure increases lin-
early. What this really means is that if you draw a graph of pres-
sure vs. depth, you get a straight line (Figure 3). Now lets fill a
can with water and look at the pressure differential (Figure 4)
between the inside of the can and the outside world (Throughout
most of the remainder of this article I will use the term “Pres-
sure” to imply “Pressure Differential”). The pressure is zero just
at the surface “A”. The pressure at “B” is an amount half way
between zero and “C” and the pressure at “C” is twice that at
“B”. Let’s reshape our can a little bit and fill it again with water
(Figure 5). The pressure at “A” is zero, at “B” is 1/2 “C” and at
“C” is twice “B” again.

Looking at figures 4 and 5, we notice a couple of things.
First, the shape of the can has nothing to do with the increase in
pressure with depth! This makes sense because you will experi-
ence the same pressure under 10 feet of water whether it’s in a
small pool, a big pool, or in the ocean. Secondly, the pressure at
the top of the can is the same as that of the outside environment.
Hence, although the pressure increases as we go down in the
can, there is no force trying to throw the water out the top of the
can because we’re back to neutral at the top.

Let’s take the same bulbous shaped can and fill it with cold
dense air. Well, it behaves about the same as it did with water.
The pressure produced by the weight of those cold dense mol-
ecules of air pushing down on one another increases with depth.
If we try to draw the pressure and associated vectors in one pic-
ture they look something like figure 6. Both the pressure and
associated force vectors start small at the top and get larger to-
ward the bottom. It’s because of these forces that the can weighs
more, full of cold air, than it would with normal temperature air
in it. The areas of downward forces have effectively increased
the weight!

Well, you can see where all of this is leading. Let’s turn the
can around fill it with hot not-very-dense air and we’ll get a
similar pressure distribution (Figure 7). Here again, the pressure
at the throat is zero and increases as you go up toward the crown
due to all of the hot little molecules pushing up on each other.
Unlike water, however, air is somewhat compressible. You don’t
quite get nice linear behavior in pressure with height above the
throat (For you purists, the pressure differential gradient in a
balloon is exponential just like the Earth’s atmosphere). For our
purposes though, we will assume it to be linear. This will work
well enough to give us some nice approximations.

Lift
When I first drew the picture in figure 7, I noticed that all

pressure vectors below the equator have downward components.
What this means is that all pressure pushing on the cloth below
the equator is effectively increasing the weight of the balloon.
Only the forces above the equator help lift.

One lonely night I decided to crank up my computer and
grind out just what was happening. Since the balloons we fly are
practically spherical, I started with a perfectly spherical shape
(the spherical shape makes the math ALOT  easier!). I also as-
sumed a linear increase in pressure from the throat to the crown.
To begin with, I calculated the sums of the vertical components

Figure 6

Figure 7
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of force at each level of the envelope. This was accomplished by
breaking the sphere up into many narrow bands similar to the 2
shown in figure 8 and using a little trigonometry.

Notice figure 9 that, because the balloon is symmetrical,
each horizontal vector component has an exact opposite on the
other side of the envelope. Thus, all of these horizontal forces
effectively cancel each other. This is intuitively reasonable since
an inflated balloon has no tendency to want to move sideways
on its own! The vertical components, however, are larger in the
upper portion of the balloon thus outweighing their negative
lower counterparts. This antisymmetric property is what pro-
duces our lift. The actual vertical force on each of these bands
can be calculated by simply multiplying the vertical component
of pressure (force per unit area) by the surface area of the band
(area).

Assuming a 60-foot diameter balloon and subdividing the
envelope into 60 narrow bands (one for each foot of height), I
calculated the force on each, and produced the following plot
(Figure 10). This curve is based on lifting a 1000-pound gross
load. The horizontal axis of the plot is a measure of the height
above the throat (the throat was assumed to be the bottom point
of the sphere). The vertical axis is the total lifting force in pounds
produced by that particular band on the envelope.

An interesting point of geometry is that each band has the
same surface area although the bands vary in shape and size
(188 square feet). In fact at the crown the band becomes a cap
just like a parachute top. The proof of this is a little complicated
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for the scope of this article.
To understand the curve in figure 10, let’s start at the throat.

Here the internal pressure of the balloon is the same as the exter-
nal atmospheric pressure, the differential is zero. Therefore the
forces near the throat are zero. As we move up the side of the
balloon the pressure increases. However, all vertical components
of the force point downward and oppose lift. These forces act as
apparent extra weight! As we reach the equator we’ve got more
pressure, but all vectors are pointing horizontally, i.e. no verti-
cal components. Moving upward from the equator we begin to
get positive lift since the pressure vectors start pointing slightly
upward. Then as we move near the crown the vectors almost
point straight up and the pressures in the balloon are at their
highest.

So, there you have it! The way the forces behave to lift a
balloon envelope. The curve in figure 10 was very interesting to
me the first time that I generated it. It shows that the lower half
of the balloon actually produces negative lift (equivalent to ex-
tra weight). When you see things like this you might ask: “Why
not just get rid of the lower half of the envelope”? Well, if you
did that, the pressure at the equator would be zero. Remember
that the pressure starts building from the throat up. You need
good pressure by the time the vectors start turning up just above
the equator. Hence, the bottom of the balloon is needed to trap
the air which creates the higher pressures in the top.

Going a step further, we can sum up the total increase in
weight of the balloon due to down-sloping forces. This is equiva-
lent to the shaded area between the curve and the zero local lift

line (area “A” in figure 11). It turns out that this total downward
force for a spherical balloon is exactly compensated by the up-
ward force produced by the area of the balloon beginning at the
equator and ending 3/4 the way up the balloon (area “B” figure
11). The next area (area “C” in figure 11) produces all of the
usable lift.

Isn’t that interesting though! What all of this means is that
the balloon envelope, from the throat to a point 3/4 the height of
the balloon, produces no net lift! When we get up the envelope
3/4 of the way to the crown only then do we start to get usable
lifting forces.

Next, we might like to look at the magnitude of the forces
in each of these regions. In working this calculation I made the
assumption that I needed to lift 1000 pounds (gross load). For
this case the downward force produced by area “A” is 250
pounds, the upward force produced by area “B” is 250 pounds,
and area “C” generates 1000 pounds of residual lift.

By knowing how to think about these forces, those of you
who like to do some figuring for home balloon designs can do
some quick and dirty calculations to approximate the forces in
the tops of your balloons. The first thing you have to do is figure
out the surface area of your design that supports the load, i.e.
where the vectors point up. Then determine how much load you
want to carry, and divide the two, i.e. LOAD (pounds) divided
by AREA (square feet) equals pressure (pounds/square foot). In
most cases the result isn’t quite exact for a couple of reasons.
First, you’re neglecting forces that don’t point up, and second,
you’re assuming a uniform pressure distribution. Even if this
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technique isn’t perfect you’ll find, though, that it gives you a
pretty good approximation.

Just for fun let’s grind this calculation out for our spherical
balloon. Since the top 1/4 of the envelope supports all of the
weight and we have a 60-foot diameter, the surface area of that
section is

4πR2=Surface Area of a Sphere
1/4(4)πR2=Area of top 1/4 of the Balloon where π=3.14,

and R (radius) = 30 feet. So, the two 4’s cancel each other and
=3.14 (30) (30) = 2826 square feet.
(lets call it 2800). If we need to lift 1000 pounds gross load

then all 1000 pounds is distributed on this 2800 square feet of
fabric which means we need a pressure differential of

1000 lb/2800 ft2 = .36 lb/ft2

or about 5.7 ounces per square foot. Because the pressure in
the top isn’t really constant the real values range from about 5
ounces per square foot at the 3/4 mark to about 7 ounces per
square foot at the crown. As you can see, though, if you’re just
trying to get an idea of the forces (within a half pound or so),
this method works real well.

Let’s consider a different geometric example for those of
you who might like to fly a can shape (Figure 12). For a good
comparison let’s build a balloon of the same height and cubic

volume as our spherical example (113,000 cubic feet). To do
this we make a cylinder 60 feet high and 49 feet across. Here the
side vectors point horizontally all the way up the balloon. Only
the top area makes lift to use for flight. A simple calculation
shows the lifting area (the lid) to be 1883 square feet. If we want
to carry the same 1000-pound load this fabric must support a
pressure of

1000 lb/1883 ft2 = .53 lb/ft2 = 8.5 oz/ft2

That’s an increase of 2 to 3 ounces per square foot over a
sphere. So you can see as we deviate from the spherical shape
things can get worse. To fly this can, the pilot would have to run
hotter to generate the higher pressures. This reduces fabric life
and uses more fuel, but there is a price for everything. I person-

ally like to see the fun new shapes and designs being built!

Epilogue
After my first article on The Physics of Lift in Hot Air Bal-

looning (Balloon Life, May 86) I received many letters from
home designers and other very interesting people. That corre-
spondence stimulated me to write this article.

It’s wonderful to live in time when we can fly! Happy
Heights!

This article originally appeared in Balloon Life FEbruary
1987. William G. Phillips, Research Physicist, Science and Avia-
tion Consultants Inc., Las Vegas, Nevada.


